

The Tunka-Rex experiment for detection of air shower radio emission

Yuliya Kazarina for the Tunka-Rex collaboration, Irkutsk State University (ISU, Russia) 10.06.2014, ARENA, Annapolis

10.06.2014

2006-2012: Tunka-133 array: 175 optical Cherenkov detectors on 3 km² area

ТУНКИНСКИЙ РАЙОНО

НАЦИСНАЛЬНЫЙ ПАРК

51°48'35" N 103° 04'02" E 675 m a.s.l.

10.06.2014

Advantages of the Tunka-133¹ array:

- core reconstruction 5-10 m
- energy resolution ~10 15%
- X_{max} precision 20-25g/cm²
- angular resolution 0.3 deg

Disadvantage:

Short time of operation (moonless, cloudless nights) – 5-10% duty cycle

¹ Tunka-133: Main Experimental Results of 3 Year Operation / Prosin V. // the proceeding of ICRC 2013

10.06.2014

TAIGA – Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

Array design concept

•Net of non imaging wide-angle optical stations (HiSCORE type, M.Tlutzikont et al)

Net of 3-4 m class imaging telescopes

Net of scintillation detectors (including underground muon detectors) 10² → 2• 10³ m² area.

10.06.2014

Tunka-Rex: detector

Tunka-Rex started data taking on 8 of Oct. 2012

Existing DAQ Trigger and information from air-Cherenkov detector

Radio quiet rural location

The main goal is crosscalibration of radio + air Cherenkov:

joint operation and analysis
determine radio energy precision
determine radio X_{max} precision

Tunka-Rex collaboration

N. M. Budnev², P.A. Bezyazeekov², O. A. Gress², A.
Haungs¹, R. Hiller¹, T. Huege¹, Y. Kazarina², M. Kleifges³, E.
Konstantinov², E. E. Korosteleva⁴, D. Kostunin¹, O. Krömer³,
L. A. Kuzmichev⁴, R. R. Mirgazov², L.V. Pankov², V. V.
Prosin⁴, G. I. Rubtsov⁵, C. Rühle³, V. Savinov²,
F. G. Schröder¹, R. Wischnewski⁶, A. Zagorodnikov²

- 1 Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany
- 2 Institute of Applied Physics ISU, Irkutsk, Russia
- 3 Institut für Prozessdatenverarbeitung und Elektronik, KIT, Germany
- 4 Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
- 5 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow
- 6 DESY, Zeuthen, Germany

10.06.2014

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

Lake Baika

ISU

Tunka

rkutsk

Radio emission from cosmic rays

✓ Radio emission in MHz-GHz range ✓ Tunka-Rex: 30-80 MHz band (as other experiments)

10.06.2014

Technical characteristics of Tunka-Rex

•	Number of antennas	25(2 channels each)
•	Antenna type	SALLA
•	Distance between antennas	~200 m
•	Frequency band	30-80 MHz
•	Channel alignment	NW - SE, NE-SW
•	Area	1 km ²
•	Sampling: rate	200 MHz
•	Trace length	1024 samples ($\approx 5 \ \mu s$)
•	Approximate energy range	$10^{16.5} - 10^{18} \mathrm{eV}$
•	For the analysis we use the radio part of	of the Auger Offline software ¹

¹Pierre Auger Collaboration, NIM A 635 (2011) 92

Short Aperiodic Loaded Loop Antenna (SALLA)

Cheap, simple and stable antenna
Low gain, but also low dependency on ground conditions, good zenith coverage

Gain of the SALLA in the vertical plane for a frequency of 50 MHz. The different lines correspond to different ground types

10.06.2014

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

✓ SALLA at KIT, oscilloscope as DAQ
 ✓ LOPES method and equipment
 ✓ ≈ 10 m above antenna, DGPS
 ✓ Align from ground

10.06.2014

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

11

Amplitude frequency characteristic of ADC

ADC calibration

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

Example for the Tunka-Rex event

Analysis strategy: semi-blind analysis

- First season: Oct 2012 Apr 2013
 - Air-Cherenkov reconstruction available: Geometry, Energy, Xmax
 - Used to develop and tune methods for energy and Xmax reconstruction
- Second season: Oct 2013 Apr 2014
 - Only geometry from air-Cherenkov reconstruction
 - Energy and Xmax kept secret by the Tunka-133 collaboration
 - Will be revealed later for cross-check

Reconstructed events (data of 2012-2013 season)

Total time of measurements -392 hours

Total reconstructed events: 146

► Reconstructed 62 events with $\Theta \le 50^{\circ}$ (Energy, geometry, X_{max} from cherenkov)

Reconstructed 84 events with $\Theta > 50^{\circ}$ (only direction from cherenkov)

Reconstruction cuts:

• angle difference cherenkovradio < 5°

• 3 antennas SNR > 6

North-South asymmetry is observed

Amplitude comparison with CoREAS

2012/2013 cherenkov events, min. 3 antennas SNR ≥ 8 , $\Delta \Omega \leq 5^{\circ} \rightarrow 57$ events

sim.energy, direction, core from Cherenkov reconstruction repeated simulation

10.06.2014

 $E > 10^{17} eV$

Lateral distribution treatment

10.06.2014

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

17

Yuliya Kazarina - Tunka-Rex experiment for detection of EAS radio emission, ARENA 2014, Annapolis

Conclusion

- Results of the 2012/2013 season have shown that Tunka-Rex detects the radio emission from extensive air showers
- After quality cuts strong correlation between amplitude and energy
- Amplitudes agree with CoREAS
- Tunka-Rex has high sensitivity to inclined air-showers

Plans for the future

- Investigate possibilities of X_{max} reconstruction
- Cross check results with 2013/2014 data set (semi-blind analysis)
- Trigger Tunka-Rex also by the scintillator extension for an increased duty cycle

Backup

Data acquisition and event merging

- trigger on cluster level by 3 coincident PMT
- offline combination of coincident cluster trigger for event search
- time synchronization via central clock + measured fibre delay

10.06.2014

Helmholtz Russia Joint Research Group HRJRG-303 Measurements of Gamma Rays and Cosmic Rays in the Tunka-Valley in Siberia by innovative new technologies

High energy γ (GeV / TeV / PeV):

Ultra-high energy CR (PeV - EeV):

