The Tunka experiment: from cosmic ray to gamma-ray astronomy.

N.Budnev, Irkutsk State University For Tunka&TAIGA - collaboration

High energy charged particles and gamma – ray detections

Atmosphere as a huge calorimeter

Tunka-133 array: 175 optical detectors distributed on 3 km² area

Tunka Collaboration

S.F.Beregnev, S.N.Epimakhov, N.N. Kalmykov, N.I.KarpovE.E. Korosteleva, V.A. Kozhin, L.A. Kuzmichev, M.I. Panasyuk, E.G.Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G.Sveshnikova I.V. Yashin,

Skobeltsyn Institute of Nucl. Phys. of Moscow State University, Moscow, Russia;

N.M. Budnev, O.A. Chvalaev, O.A. Gress, A.V.Dyachok, E.N.Konstantinov, A.V.Korobchebko, R.R. Mirgazov, L.V. Pan'kov, A.L.Pahorukov, Yu.A. Semeney, A.V. Zagorodnikov Institute of Applied Phys. of Irkutsk State University, Irkutsk, Russia;

B.K. Lubsandorzhiev, B.A. Shaibonov(ju), N.B. Lubsandorzhiev Institute for Nucl. Res. of Russian Academy of Sciences, Moscow, Russia;

V.S. Ptuskin IZMIRAN, Troitsk, Moscow Region, Russia;

Ch. Spiering, R. Wischnewski DESY-Zeuthen, Zeuthen, Germany;

A.Chiavassa Dip. di Fisica Generale Universita' di Torino and INFN, Torino, Italy.

Advantage of the Tunka-133 array:

- 1. Good accuracy positioning EAS core (5 -10 m)
- 2. Good energy resolution (~15%, in principal up to 5%)
- 2. Good accuracy of primary particle mass identification (accuracy of X_{max} measurement ~ 20 -25 g/cm²
- 3. Good angular resolution $\sim 0.1 0.3 \text{ deg}$
- 4. Low cost: the Tunka-133 3 km² array ~ 10⁶ Euro

Disadvantage:

Short time of operation (moonless, cloudless nights) – 5-10%

Five seasons of Tunka-133 array operation

1540 h of good weather for observation with a trigger frequency ~ 2 Hz
10 000 000 events
> 12 000 events with an energy ≥ 50 P3B

> 3000 events with an energy \geq 100 P₃B.

Trigger counting rate during one night .

>10 events during every night with number of hit detectors more than 100.

Distribution of the number of hitted clusters in an event.

The all particles energy spectrum $I(E) \cdot E^3$

 Agreement with KASCADE-Grande, Ice-TOP and TALE (TA Cherenkov).
 The high energy tail do not contradict to the Fly's Eye, HiRes and TA spectra..

Mass composition: two methods of X_{max} measurement:

 $\Delta X_{max} \leq 25 \text{ g-cm}^{-2}$

ADF steepness: **b** Pulse width at core distance 400 m: $\tau_{eff}(400)$ 4.5 IgFWHM lg(Q/phot. cm⁻² eV⁻¹) $E_0 = 5 * 10^{17} \text{ eV}$ $E_{e} = 5 * 10^{17} \text{ eV}$ 2.4 **WDF** $\vartheta = 5.7^{\circ}$ $v = 5.7^{\circ}$ 1603 No 63 1603 No - 63 2.2 3.5 N_{points}=98 N_{points}=117 3 2 2.5 ADF 1.8 2 1.6 1.5 R<450 m R<250 m 1.4 1 1.2 0.5 L n 200 400 600 800 1000 200 800 1000 400 600 Core distance (ldf), m Core distance (ldf), m

Mean Depth of EAS maximum X_{max} g·cm⁻²

Mean logarithm of primary mass.

 The Xmax do not contradict to that of HiRes-MIA and Auger data.
 CR composition changes to heavy from 10 PeV to 30 PeV and changes back to light in the range 100 – 1000 PeV.

Spectra of light (p+He) and heavy (all other) CR components

Towards High Energy Gamma-Ray Astronomy array at Tunka Valley

TAIGA – Tunka Advanced Instrument for cosmic rays and Gamma Astronomy – **5 arrays**

Tunka-133

Tunka-Rex

Shower front and LDF sampling technique for core position and energy reconstruction.

Angular resolution – 0.1 deg, Xmax measurement for hadron rejection.

Tunka-IACT array -net of Imaging Atmospheric Cherenkov Telescopes with mirrors - 4 m diameter about.

charged particle rejection using imaging technique.

 Tunka – Grande array net of scintillation detectors, including underground muon
 Detectors with area -10² → 2 10³ m² area charged particle rejection.

From Tunka-Collaboration to TAIGA-Collaboration

Germany

Russia

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich) KIT (Karlsruhe) Humbolt University (Berlin)

ITALY Torino University (Torino)

MSU(SINP)(Moscow) ISU (API) (Irkutsk) JINR (Dubna) IZMIRAN (Moscow) INR RAS (Moscow) MEPHI (Moscow) Kurchatov Institute (Moscow) IPSM(Ulan-Ude)

Gamma-ray Astronomy

Search for the PeVatrons. VHE spectra of known sources: where do they stop? Absorption in IRF and CMB. Diffuse emission: Galactic plane, Local supercluster.

Charged cosmic ray physics

Energy spectrum and mass composition anisotropies from 10¹⁴ to10¹⁸ eV. 10⁸ events (in 1 km² array) with energy > 10¹⁴ eV

Particle physics

Axion/photon conversion. Hidden photon/photon oscillations. Lorentz invariance violation. pp cross-section measurement. Quark-gluon plasma.

Main Topics for TAIGA

Observation time for some gamma sources per one year with TAIGA array (short list)

Name	RA degrees	Decl	Flux F at 1 TeV, 10 ⁻¹² cm ⁻² s ¹ TeV ⁻¹ Γ	Flux F at 35 TeV, 10 ⁻¹⁷ cm ⁻² s ⁻ ¹ TeV ⁻¹ (from Milagro)	Time of observation per one year (x 0.5- weater factor)
Tycho SNR (J0025+641)	6.359	64.13	0.17 ±0.05 Γ=1.95 ±0.5		236h
Crab	83.6329	22.0145	32.6 ±.9.0 Γ=2.6 ±0.3	162.6 ±9.4	110h,
SNR IC443 (<u>MAGIC J0616+225</u>)	94.1792	22.5300	0.58 ±0.12 Γ=3.1 ±0.30	28.8 ±9.5	112h,
Geming a MGRO C3 PSR	98.50	17.76		37.7 ±10.7	102h,
M82 (Starburst Galaxy)	148.7	69.7	0.25 ±0.12 Γ=2.5 ±0.6±0.2		325h,
<u>Mkn 421</u> (BL, z=0.031 Variable)	166.114	38.2088	50-200 Γ=2.0-2.6		140h
SNR 106.6+2.7 (J2229.0+6114)	337.26	61.34	1.42 ±0.33 ±0.41 Γ=2.29 ±0.33 ±0.30	70.9 ± 10.8	167h
<u>Cas A</u> (SNR, G111.7- 2.1)[6]	350.853	58.8154	1.26 ±0.18 Γ=2.61 ±0.24±0.2		177h
CTA_1(SNR,PWN)	1.5	72.8	1.3 Γ=2.3		266 h

Tunka - HiSCORE (Hundred*i Squarekm Cosmic Origin Explorer).

Tunka-HiSCORE Cherenkov detector

In October 2012 first setup of 3 Tunka-HiSCORE Cherenkov detectors were put in operation combined with Tunka-133

Signal from Tunka

-HiSCORE

2100 2150 2200 2250 2300 2350 2400 2450

New Tunka

-HiSCORE

-40
 -60
 -80
 -100
 -120

det +3

Time, ns

Cherenkov detectors of Tunka-133 array

October 2013 Prototype of Tunka-HiSCORE 9 Cherenkov stations

36 PMT R5912 (8") New readout system. New DAG based on DRS-4 bord

For $E_0 > 3 \cdot 10^{15}$ eV: Arrival direction difference – $\Delta \psi < 0.5^{\circ}$ EAS core coordinate difference – $\Delta X < 7 \text{ m}, \Delta Y < 7 \text{ m}$ LogE0 difference – $\Delta \lg E0 < 0.051 (1 2\%)$

- Tunka-HiSCORE:
- "see N.Budnev (previous talk), and M.Tluczykont (plenary)
 - Ground array detector
 - Stations spacing ~150m over 1-100 km
 - nsec-time resolution between stations needed for optimal EAS-pointing
- MC simulations:
 - angular resolution degrades for >1nsec time resolution

A distributed DAQ system for the HiSCORE detector based on the WhiteRabbit (WR) timing system has been developed in order to achive a sub-ns time resolution

Shower Light front

2

PMTs + Summator: signal

- 4 Anodes Sum (AS)
- WR SPEC FPGA:
 - trigger on the AS (9ns above the threshold)
- RaspberryPI: Connected to SPEC and DRS boards
 - When SPEC triggers: DRS start recording
 - When DRS recording is finished: ready flag sent to SPEC to trigger next event
 - Send data to the DAQ center
 - WR Switch: synchronize all the array stations trigger time

(WR Swithc)

An accuracy of EAS axis direction reconstruction

Distance, m

An amplitude spectrum of PMTs pulses of a Tunka-HiSCORE optical station

LDF of Cherenkov light from gamma-rays induced EAS

And Threshold distains from core Threshold distains from core

Efficiency of gamma ray detection with Tunka-HiSCORE

Tunka-HiSCORE event example Zenith angle = 7.2° Energy = 10^{16} eV

Shower front

Tunka-HiSCORE: All particle energy spectrum. PRELIMINARY

84 h during 13 clean moonless nights in February and March of 2014

~ 145 000 events with $E_0 > 3.10^{14} \text{ eV}$ - 100% efficiency

~ 21 000 events $E_0 > 10^{15} \text{ eV}$

~ 200 events $E_0 > 10^{16} \text{ eV}$

All particle spectrum

detectors (0.2% of array area)

Rejection of p-N background with Tunka-Grande

Tunka –IACT array consisting of TAIGA

A system of 16 IACT (Imaging Atmospheric Cherenkov Telescopes) which will operate together with TUNKA-133 Tunka-HiSCORE and Tunka-Grande.

Mirror diameter – 4 m about (34 mirrors with 60 cm diameters), 4.8 m focal distance Spacing 300 – 600 (?) m Covering an area of 1 km x 1 km An energy range - TeV-EeV Threshold energy ~ 2-3 TeV Field of imaging cameras view of 8° x 8° Pixel size -0.4°, Low cost

Camera : 400 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 output size 1 single pixel = 0.36 deg full angular size 8.3 deg

DAQ - MAROC3

Very near future of Tunka experiment

Spring 2014 y:

- 1. Tunka-133
- 2. Tunka-HiSCORE 9 stations

175 detectors single PMT of Ø 20 cm **4 PMT** with Winston cones

- 3. Tunka-Rex 25 radio antennas
- 4. Optical telescope of "Master" net

November 2014 y :

- 1. Scintillation station for electrons and muons detection (based on former KASCADE-Grande detectors) - 19 stations (total area for muons 100 m²)
- 2. Tunka-HiSCORE - 33 stations
- 3. Prototype of IACT with mirrors of 15 m² area
- 4. Tunka-Rex + 25 radio antennas

Tunka-HiSCORE October 2014y – 33 stations Decreasing of a threshold for γ to ~30 TeV

All the stations will be tilted for 30° to the South for observation of Crab Nebulae

About 10-20 γ -events from Crab are expected during 100 h of observation.

Stage 3 (2015-2018 years): net of wide angle Cherenkov detectors + 16 imaging telescopes (IACT) + 2000m² muon detectors

Sensitivity for gamma rays

CTA (2017-18) - ~400 Millions Euro (!) LHAASO (2013-2018) ~150 Millions \$

Summary and outlook

- 1. Cherenkov technique is very suitable way to study high energy cosmic rays as well gamma-rays, Tunka valley is one of the best place for construction of large Cherenkov arrays.
- 2. The structure of CR energy spectrum in the energy range of 10¹⁴ to 10¹⁸ eV were measured with high resolution. The second "knee" at energy ~3·10¹⁷ eV point out on transition from Galactic to extragalactic sources of CR.
- **3.** The new gamma observatory TAIGA will allow:
- To perform search for local Galactic sources of gamma-quanta with energies more than 20-30 TeV (search for PeV-trons) and study gamma-radiation fluxes in the energy region higher than 20-30 TeV at the record level of sensitivity.
- To study energy spectrum and mass composition of cosmic rays in the energy range of $5 \cdot 10^{13}$ 10^{18} eV at so far unprecedented level of statistics.
- To study high energy part of gamma-rays energy spectrum form the most bright balzars (absorption of gamma-quanta by intergalactic phone, search for axion-photon transition).
- **Etc....**

