Towards Gamma-ray astronomy with timing-arrays

Martin Tluczykont ECRS 2014, Kiel

September 3, 2014

Gamma-ray astronomy

September 3, 2014

Gamma-ray astronomy

Measuring cosmic-ray and gamma-ray air showers

Tibet AS-Gamma Argo YBJ LHAASO

Tunka-Rex

A REAL PROPERTY.

Tunka-HiSCORE

Tunka-133

IceCube

Rup 118545 Event 63733662 in ice/0 Cone 400000

Timing arrays and detection methods for gamma astronomy

Method	E _{thr}	Angular resolution	ΔE/E	γ/h	Duty cycle
Particles	~3 TeV Water: 100 GeV	~1° <0.5°	30-50%	~1 ~6	100%
Cherenkov	IACTs: 5GeV NonI: 10 TeV	0.1-0.2°	10-15%	~4 ~1.5-2	10%
Fluoresc.	10 ¹⁷ eV	>1°	10-15%	?	10%
Radio	10 ¹⁷ eV	>1°	10-15%	?	100%

Timing of air showers

Timing of air showers

- Particle front disk width: ~30ns @ 100 m
- Cherenkov light front: disk width: <10 ns @ 100 m

martin.tluczykont@physik.uni-hamburg.de

Air Cherenkov imaging and timing

H.E.S.S. Telescopes

Air Cherenkov imaging and timing

	Imaging ACTs	Timing arrays
Direction	Image orientation	Shower front arrival times
Particle type	Image shape	Lateral density function Arrival times Time width (FWHM)
Energy	Ch. photon count	Ch. photon count

Upcoming timing arrays: HiSCORE and TAIGA

Tunka-HiSCORE

Tunka-HiSCORE Status

Prototype-array:

- 9 stations, 300m X 300m
- 150m inter-station distance
- 2 parallel DAQ systems
- Energy threshold: <30 TeV

Future:

Projected E_{thr}: 10 TeV
 graded array and clipping

Station:

- 0.5 m² light collection
- 4 channels (PMT + Cone)

Tunka-HiSCORE Status

Prototype-array:

- 9 stations, 300m X 300m
- 150m inter-station distance
- 2 parallel DAQ systems
- Energy threshold: <30 TeV

Future:

 Projected E_{thr}: 10 TeV graded array and clipping

Also see:

Kozhin, V. "A DAQ System for Tunka-HiSCORE", S8-234 Epimakhov, S. "Amplitude calibration for Tunka-HiSCORE", S4-425

Reconstruction

Tunka-133 [Berezhnev et al. 2012NIMPA.692...98B] HiSCORE [Hampf et al. 2013NIMPA.712..137H]

Reconstruction

- Shower core position 1 (cog)
- Preliminary direction (time plane fit)
- Improved core position: light distribution function (LDF) fitting
- Improved direction: arrival time model

HiSCORE detector stations

rise time peak time 70 60 hotoelectrons / ns 50 40 30 FWHM 20 size 10 0 -10 10 20 30 40 50 60 edge time Time [ns]

September 3, 2014

Arrival time model

September 3, 2014

Angular resolution

Crucial: relative time-synchronization <1ns

Two time-calibration systems: DRS4 sampling of 100 MHz frequency WhiteRabbit system

September 3, 2014

Energy determination

Energy determination

HiSCORE simulation

September 3, 2014

Particle separation Xmax vs. E

September 3, 2014

Shower maximum

- **Time model method:** X_{max} free parameter in arrival time model
- **LDF method:** X_{max} from LDF slope, Q50/Q220
- Width method: X_{max} from signal width

Shower maximum

HiSCORE Simulation

September 3, 2014

Particle separation Q-factor

- Xmax vs. E
- Shower front rise time
- Systematic differences between Xmax reconstruction methods

Survival probabilities and QF

Sensitivity

Tunka-HiSCORE \rightarrow TAIGA

Tunka Advanced Instrument for Gamma ray and cosmic ray physics

10/2014: extension

- Additional 25 stations
- First telescope
- Tilting mode

2015+:

- 10 telescopes
- Hybrid timing+imaging
- Muon detectors

TAIGA Telescopes

- Dish: Davies-cotton tesselated, 34 mirrors (60cm)
- 4.3 m dish diameter
- 4.75 m focal length
- F/D ~ 1.2
- 397 PMT camera foV 8° (0.38° / pixel)
- Proven design components

Non-imaging and imaging hybrid detection

Telescope image scaling

Central reconstruction parameter: Shower core position D_k

$$w_{\rm MC} = w_{\rm MC}(size, D_{\rm K}, \vartheta)$$

$$mscw = \frac{1}{N_{Tel}} \sum_{k=1}^{N_{Tel}} \frac{width}{w_{MC}}$$

September 3, 2014

Hybrid Image scaling: D_{κ} from timing array Image from telescope(s)

0

0

00000 0 0 0 0 0 0 0

0000000

0000000

0 👝 0 0000000

0000

0

000000 00000

00

00

00

00

00

W

0 00

0

00000 0 0 0 0 0 0 000000

00

imaging

 \rightarrow large inter-telescope distance = large A_{ff} ! \rightarrow scaled width separation parameter

(+ stereo at high energies, mean scaled width)

T

September 3, 2014

HiSCORE + IACTs

Preliminary results hybrid width scaling:

- Improves gamma-hadron separation
- Increases total area as compared to stereoscopic array

marun.uuczykonu@pnysik.uni-namourg.ue

Hybrid events: Sensitivity

September 3, 2014

Astronomy

Accessing a new energy range (E>10TeV)

- → Pevatrons
- Diffuse Galactic emission
- Absorption by pair production with Interstellar photon field
 - Indirect measurement of field density
 - Distance measurement using gamma-ray spectra
- Heavy dark matter
- → Unexpected discoveries...

Summary

• Timing information

- Best provided by air Cherenkov technique
- Complementary to imaging
- Combination with imaging promising
- Large arrays possible with low level of complexity
- Potential for opening up gamma-ray astronomy in the multi-TeV regime

Backup slides

Sky coverage

Standard observation mode: station points to zenith Tilted mode: inclined along the north-south axis. Tilting: coverage of different parts of the sky. Tilted south mode: 110 h on the Crab Nebula, after weather corrections.

400 350 300 30 250 25 Normal Tilted +180 +180 20 200 mode south 30° 150 15 mode 10 100 50 50 n -90 -90

September 3, 2014

Past experiments

- Themistocle
- AIROBICC

September 3, 2014

AIROBICC results

Nr.	Objekt	N _{QB}	\hat{N}_{QB}	N_{OG}	S _{DC}		Sburst, exp	$S_{\rm var, \ kol}$	$E_{\text{thr, }\gamma}$	Φ_{OG}
			$(= \alpha \cdot N_{BG})$		[σ]		$[\sigma]$	$[\sigma]$	[TeV]	$[10^{-13} \rm cm^{-2} \rm s^{-1}]$
1	GRS1915	100 (1325)	106,1 (1318,1)	13,5	-0,57	(0,19)	-2,19	1,92	20,3	1,8
2	Cyg X-3	125 (1806)	133,3 (1739,4)	14,3	-0,71	(1,56)	1,43	0,75	20,6	1,5
3	Geminga	114 (1128)	101,1 (1092,0)	27,6	1,24	(1,06)	-0,25	0,07	19,4	4,1
4	AE Aqr	24 (151)	16,0 (150,2)	14,5	1,83	(0,07)	-1,24	-0,16	27,0	7,8
5	Berk 87	162 (2017)	142,2 (1885,2)	36,8	1,60	(2,95)	-0,77	-1,93	20,4	3,6
6	SS433	81 (852)	79,6 (832,9)	16,0	0,16	(0,65)	1,66	-0,25	22,8	2,3
7	Cyg X-1	137 (1907)	138,5 (1914,0)	18,7	-0,11 (-0,15)	-0,17	-0,36	20,1	1,9
8	Her X-1	156 (1624)	117,4 (1602,5)	54,9	3,33	(0,53)	1,35	1,13	20,3	6,5
9	AM Her	98 (1149)	89,9 (1127,8)	22,3	0,82	(0,62)	1,33	1,10	22,8	2,8
10	V404 Cyg	137 (1989)	140,2 (1966,7)	17,8	-0,25	(0,49)	-2,00	0,21	20,1	1,8

Hybrid events: more reconstruction

- Expect sensitivity boost:
 - Scaled width cut and timing hadron rejection (Q~3)
 - Further g/h separation: Angular cut, length, ...
 (+ more sophisticated methods)
 - Improved angular resolution from hybrid events: e.g. treat telescope as part of array (not yet simulated)
 - Consider time-development of image \rightarrow independent direction reconstruction

Test width scaling with IACT+HiSCORE "toy-MC-test"

- Full simulation sim_telarray
- 2D-lookup-table for MC-width w_{MC}(core, size)
- MC-core randomized with HiSCORE resolution
- Use randomized core position for width scaling

Tunka HiSCORE Status

Optical station

Electronic box

Array Optimization HiSCORE

Simulation studies:

- \rightarrow Large PMTs (12")
- \rightarrow Graded array layout

Gamma-hadron separation

Systematic bias

→ LDF & widths : sensitive to whole shower Large overestimation for heavy particles (long tails)

 Timing : sensitive to specific point (edge time)
 Small overestimation for heavy particles

Particle separation

Particle separation (2)

September 3, 2014

HiSCORE + IACTs

Timing array + imaging telescopes

Central reconstruction parameter: Shower core position

IACT image scaling using array core position

Monoscopic operation with larger distances btw telescopes

Increased area / telescope; Hybrid event reconstruction

improvement of g/h separation x2-3

September 3, 2014

Milagro / HAWC

MGRO J1908+06

Tycho Supernova remnant

Absorption

Galaxy: 100TeV-PeV: e+e-pair production with low-E photons

- Interstellar radiation field
- Cosmic Microwave Background

(e.g. Moskalenko et al. 2006)

Absorption

Particle separation Xmax vs. E

