ARTICLE IN PRESS

Nuclear Instruments and Methods in Physics Research A **I** (**IIII**) **III**-**III**

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

The Tunka radio extension (Tunka-Rex): Radio measurements of cosmic rays in Siberia

F.G. Schröder ^{a,*}, P.A. Bezyazeekov ^b, N.M. Budnev ^b, O.A. Gress ^b, A. Haungs ^a, R. Hiller ^a, T. Huege ^a, Y. Kazarina ^b, M. Kleifges ^c, E.N. Konstantinov ^b, E.E. Korosteleva ^d, D. Kostunin ^a, O. Krömer ^c, L.A. Kuzmichev ^d, N. Lubsandorzhiev ^d, R.R. Mirgazov ^b, R. Monkhoev ^b, A. Pakhorukov ^b, L. Pankov ^b, V.V. Prosin ^d, G.I. Rubtsov ^e, R. Wischnewski ^f, A. Zagorodnikov ^b

^a Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany

^b Institute of Applied Physics ISU, Irkutsk, Russia

^c Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Germany

^d Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia

^e Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

^f DESY, Zeuthen, Germany

ARTICLE INFO

Keywords: Tunka-Rex Ultra-high energy cosmic rays Extensive air showers Radio detection

ABSTRACT

The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately $10^{16} - 10^{18}$ eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about 3 km², which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary cosmic-ray particles can be determined. Finally, Tunka-Rex can be used for cosmic-ray physics at energies close to 1 EeV, where the standard Tunka-133 analysis is limited by statistics. In contrast to the air-Cherenkov measurements, radio measurements are not limited to dark, clear nights and can provide an order of magnitude larger exposure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The amplitude of the radio emission by cosmic-ray air-showers is roughly proportional to the energy of the primary particle [1]. This calorimetric sensitivity yields complementary information compared to the detection of secondary air-shower particles on ground. During dark nights with clear sky similar complementary information is available by measurements of air-Cherenkov and air-fluorescence light. Despite the higher energy threshold of about 10¹⁷ eV, the radio technique would be an interesting alternative due to its full-time availability, provided that the cost and precision is at least comparable.

The main scientific goal of Tunka-Rex is the cross-calibration of radio and air-Cherenkov measurements of the same air showers, to test the achievable precision and real potential of the radio technique experimentally. For this purpose, Tunka-Rex is built as extension of the Tunka-133 photomultiplier array in Siberia [2] (Fig. 1), which measures the air-Cherenkov light of showers in the energy range of approximately $10^{16}-10^{18}$ eV. The antennas are read out in parallel with the air-Cherenkov detector which provides the necessary hybrid measurements for cross-calibration.

2. Detector description

Since the radio emission of air showers is strongest at wavelengths of a few meters, Tunka-Rex measures in the effective band of 35–76 MHz, similar to other antenna arrays, like LOPES [1],

E-mail address: frank.schroeder@kit.edu (F.G. Schröder).

Corresponding author.

http://dx.doi.org/10.1016/j.nima.2015.08.075 0168-9002/© 2015 Elsevier B.V. All rights reserved.

Please cite this article as: F.G. Schröder, et al., Nuclear Instruments & Methods in Physics Research A (2015), http://dx.doi.org/10.1016/j. nima.2015.08.075